168 research outputs found

    The Measurement of AM noise of Oscillators

    Full text link
    The close-in AM noise is often neglected, under the assumption that it is a minor problem as compared to phase noise. With the progress of technology and of experimental science, this assumption is no longer true. Yet, information in the literature is scarce or absent. This report describes the measurement of the AM noise of rf/microwave sources in terms of Salpha(f), i.e., the power spectrum density of the fractional amplitude fluctuation alpha. The proposed schemes make use of commercial power detectors based on Schottky and tunnel diodes, in single-channel and correlation configuration. There follow the analysis of the front-end amplifier at the detector output, the analysis of the methods for the measurement of the power-detector noise, and a digression about the calibration procedures. The measurement methods are extended to the relative intensity noise (RIN) of optical beams, and to the AM noise of the rf/microwave modulation in photonic systems. Some rf/microwave synthesizers and oscillators have been measured, using correlation and moderate averaging. As an example, the flicker noise of a low-noise quartz oscillator (Wenzel 501-04623E) is Salpha = 1.15E-13/f, which is equivalent to an Allan deviation of sigma_alpha = 4E-7. The measurement systems described exhibit the world-record lowest background noise.Comment: 39 pages, 22 figures, 8 tables, 21 references, list of symbol

    On the 1/f Frequency Noise in Ultra-Stable Quartz Oscillators

    Full text link
    The frequency flicker of an oscillator, which appears as a 1/f^3 line in the phase noise spectral density, and as a floor on the Allan variance plot, originates from two basic phenomena, namely: (1) the 1/f phase noise turned into 1/f frequency noise via the Leeson effect, and (2) the 1/f fluctuation of the resonator natural frequency. The discussion on which is the dominant effect, thus on how to improve the stability of the oscillator, has been going on for years without giving a clear answer. This article tackles the question by analyzing the phase noise spectrum of several commercial oscillators and laboratory prototypes, and demonstrates that the fluctuation of the resonator natural frequency is the dominant effect. The investigation method starts from reverse engineering the oscillator phase noise in order to show that if the Leeson effect was dominant, the resonator merit factor Q would be too low as compared to the available technology.Comment: 20 pages, list of symbols, 1 table, 6 figures, 43 reference

    The effect of AM noise on correlation phase noise measurements

    Get PDF
    We analyze the phase-noise measurement methods in which correlation and averaging is used to reject the background noise of the instrument. All the known methods make use of a mixer, used either as a saturated phase detector or as a linear synchronous detector. Unfortunately, AM noise is taken in through the power-to-dc-offset conversion mechanism that results from the mixer asymmetry. The measurement of some mixers indicates that the unwanted amplitude-to-voltage gain is of the order of 5-50 mV, which is 12-35 dB lower than the phase-to-voltage gain of the mixer. In addition, the trick of setting the mixer at a sweet point -- off the quadrature condition -- where the sensitivity to AM nulls, works only with microwave mixers. The HF-VHF mixers have not this sweet point. Moreover, we prove that if the AM noise comes from the oscillator under test, it can not be rejected by correlation. At least not with the schemes currently used. An example shows that at some critical frequencies the unwanted effect of AM noise is of the same order -- if not greater -- than the phase noise. Thus, experimental mistakes are around the corner.Comment: 16 pages, list of symbols, 8 figures, 27 reference

    Applications of the optical fiber to the generation and to the measurement of low-phase-noise microwave signals

    Full text link
    The optical fiber used as a microwave delay line exhibits high stability and low noise and makes accessible a long delay (>100 microseconds) in a wide bandwidth (about 40 GHz, limited by the optronic components). Hence, it finds applications as the frequency reference in microwave oscillators and as the reference discriminator for the measurement of phase noise. The fiber is suitable to measure the oscillator stability with a sensitivity of parts in 1E-12. Enhanced sensitivity is obtained with two independent delay lines, after correlating and averaging. Short-term stability of parts in 1E-12 is achieved inserting the delay line in an oscillator. The frequency can be set in steps multiple of the inverse delay, which is in the 10-100 kHz region. This article adds to the available references a considerable amount of engineering and practical knowledge, the understanding of 1/f noise, calibration, the analysis of the cross-spectrum technique to reduce the instrument background, the phase-noise model of the oscillator, and the experimental test of the oscillator model.Comment: 23 pages, 13 figures, 41 reference
    • …
    corecore